ความรู้ เกร็ดความรู้ สารานุกรม สารานุกรมออนไลน์ ความรู้รอบตัว ความรู้ทั่วไป พจนานุกรม เกมส์ เพลงใหม่ เพลง

ฟังก์ชันตรีโกณมิติ, ฟังก์ชันตรีโกณมิติ หมายถึง, ฟังก์ชันตรีโกณมิติ คือ, ฟังก์ชันตรีโกณมิติ ความหมาย, ฟังก์ชันตรีโกณมิติ คืออะไร
| เปิดอ่าน 0 | ความคิดเห็น 0
ฟังก์ชันตรีโกณมิติ


         ฟังก์ชันตรีโกณมิติ (Trigonometric function) คือ ฟังก์ชันของมุม ซึ่งมีความสำคัญในการศึกษารูปสามเหลี่ยมและปรากฏการณ์ในลักษณะเป็นคาบ ฟังก์ชันอาจนิยามด้วยอัตราส่วนของด้าน 2 ด้านของรูปสามเหลี่ยมมุมฉาก หรืออัตราส่วนของพิกัดของจุดบนวงกลมหนึ่งหน่วย หรือนิยามในรูปทั่วไปเช่น อนุกรมอนันต์ หรือสมการเชิงอนุพันธ์ รูปสามเหลี่ยมที่นำมาใช้จะอยู่ในระนาบแบบยุคลิด ดังนั้น ผลรวมของมุมทุกมุมจึงเท่ากับ 180° เสมอ          ในปัจจุบัน มีฟังก์ชันตรีโกณมิติอยู่ 6 ฟังก์ชันที่นิยมใช้กันดังตารางข้างล่าง (สี่ฟังก์ชันสุดท้ายนิยามด้วยความสัมพันธ์กับฟังก์ชันอื่น แต่ก็สามารถนิยามด้วยเรขาคณิตได้)
ฟังก์ชันตัวย่อความสัมพันธ์ไซน์ (Sine)sinsin 	heta = cos left(frac{pi}{2} - 	heta 
ight) ,โคไซน์ (Cosine)coscos 	heta = sin left(frac{pi}{2} - 	heta 
ight),แทนเจนต์ (Tangent)tan
(หรือ tg)	an 	heta = frac{1}{cot 	heta} = frac{sin 	heta}{cos 	heta} = cot left(frac{pi}{2} - 	heta 
ight)  ,โคแทนเจนต์ (Cotangent)cot
(หรือ ctg หรือ ctn)cot 	heta = frac{1}{	an 	heta} = frac{cos 	heta}{sin 	heta} = 	an left(frac{pi}{2} - 	heta 
ight) ,ซีแคนต์ (Secant)secsec 	heta = frac{1}{cos 	heta} = csc left(frac{pi}{2} - 	heta 
ight) ,โคซีแคนต์ (Cosecant)csc
(หรือ cosec)csc 	heta =frac{1}{sin 	heta} = sec left(frac{pi}{2} - 	heta 
ight) ,
นิยามจากรูปสามเหลี่ยมมุมฉาก
     ในการนิยามฟังก์ชันตรีโกณมิติสำหรับมุม A เราจะกำหนดให้มุมใดมุมหนึ่งในรูปสามเหลี่ยมมุมฉากเป็นมุม A
  • เรียกชื่อด้านแต่ละด้านของรูปสามเหลี่ยมตามนี้
  • ด้านตรงข้ามมุมฉาก (hypotenuse) คือด้านที่อยู่ตรงข้ามมุมฉาก หรือเป็นด้านที่ยาวที่สุดของรูปสามเหลี่ยมมุมฉาก ในที่นี้คือ h
  • ด้านตรงข้าม (opposite side) คือด้านที่อยู่ตรงข้ามมุมที่เราสนใจ ในที่นี้คือ a
  • ด้านประชิด (adjacent side) คือด้านที่อยู่ติดกับมุมที่เราสนใจและมุมฉาก ในที่นี้คือ b
  • จะได้
  1. ไซน์ ของมุม คือ อัตราส่วนของความยาวด้านตรงข้าม ต่อความยาวด้านตรงข้ามมุมฉาก ในที่นี้คือ sin(A) = ข้าม/ฉาก = a/h
  2. โคไซน์ ของมุม คือ อัตราส่วนของความยาวด้านประชิด ต่อความยาวด้านตรงข้ามมุมฉาก ในที่นี้คือ cos(A) = ชิด/ฉาก = b/h
  3. แทนเจนต์ ของมุม คือ อัตราส่วนของความยาวด้านตรงข้าม ต่อความยาวด้านประชิด ในที่นี้คือ tan(A) = ข้าม/ชิด = a/b
  4. โคซีแคนต์ csc(A) คือฟังก์ชันผกผันการคูณของ sin(A) นั่นคือ อัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อความยาวด้านตรงข้าม csc(A) = ฉาก/ข้าม = h/a
  5. ซีแคนต์ sec(A) คือฟังก์ชันผกผันการคูณของ cos(A) นั่นคือ อัตราส่วนของความยาวด้านตรงข้ามมุมฉาก ต่อความยาวด้านประชิด sec(A) = ฉาก/ชิด = h/b
  6. โคแทนเจนต์ cot(A) คือฟังก์ชันผกผันการคูณของ tan(A) นั่นคือ อัตราส่วนของความยาวด้านประชิด ต่อความยาวด้านตรงข้าม cot(A) = ชิด/ข้าม = b/a
วิธีจำ
วิธีจำอย่างง่าย ๆ คือจำว่า ข้ามฉาก ชิดฉาก ข้ามชิด ซึ่งหมายความว่า
  • ข้ามฉาก ... sin = ด้านตรงข้าม/ด้านตรงข้ามมุมฉาก
  • ชิดฉาก ... cos = ด้านประชิด/ด้านตรงข้ามมุมฉาก
  • ข้ามชิด ... tan = ด้านตรงข้าม/ด้านประชิด
นิยามด้วยวงกลมหนึ่งหน่วย
      ฟังก์ชันตรีโกณมิติทั้ง 6 ฟังก์ชัน สามารถนิยามด้วยวงกลมหนึ่งหน่วย ซึ่งเป็นวงกลมที่มีรัศมียาว 1 หน่วย และมีจุดศูนย์กลางอยู่ที่จุดกำเนิด วงกลมหนึ่งหน่วยช่วยในการคำนวณ และหาค่าฟังก์ชันตรีโกณมิติสำหรับอาร์กิวเมนต์ที่เป็นบวกและลบได้ ไม่ใช่แค่ 0 ถึง π/2 เรเดียนเท่านั้น สมการของวงกลมหนึ่งหน่วยคือ:
                                                       x^2 + y^2 = 1 ,
       เราจะวัดมุมในหน่วยเรเดียน โดยให้มุมเป็นบวกในทิศทวนเข็มนาฬิกา และมุมเป็นลบในทิศตามเข็มนาฬิกา ลากเส้นให้ทำมุม θ กับแกน x ด้านบวก และตัดกับวงกลมหนึ่งหน่วย จะได้ว่าพิกัด x และ y ของจุดตัดนี้จะเท่ากับ cos θ และ sin θ ตามลำดับ เหตุผลเพราะว่ารูปสามเหลี่ยมที่เกิดขึ้นนั้น จะมีความยาวด้านตรงข้ามมุมฉาก ยาวเท่ากับรัศมีวงกลม นั่นคือยาวเท่ากับ 1 หน่วย เราจะได้ sin θ = y/1 และ cos θ = x/1 วงกลมหนึ่งหน่วยช่วยให้เราหากรณีที่สามเหลี่ยมมีความสูงเป็นอนันต์ (เช่น มุม π/2 เรเดียน) โดยการเปลี่ยนความยาวของด้านประกอบมุมฉาก แต่ด้านตรงข้ามมุมฉากยังยาวเท่ากับ 1 หน่วย เท่าเดิม
       สำหรับมุมที่มากกว่า 2π หรือต่ำกว่า −2π เราสามารถวัดมุมได้ในวงกลม ด้วยวิธีนี้ ค่าไซน์และโคไซน์จึงเป็นฟังก์ชันเป็นคาบที่มีคาบเท่ากับ 2π:
sin	heta = sinleft(	heta + 2pi k 
ight)cos	heta = cosleft(	heta + 2pi k 
ight)
        เมื่อ θ เป็นมุมใดๆ และ k เป็นจำนวนเต็มใดๆ
        คาบที่เป็นบวกที่เล็กที่สุดของฟังก์ชันเป็นคาบ เรียกว่า คาบปฐมฐานของฟังก์ชัน คาบปฐมฐานของไซน์, โคไซน์, ซีแคนต์ หรือโคซีแคนต์ จะเท่ากับวงกลมหนึ่งวง นั่นคือเท่ากับ 2π เรเดียน หรือ 360 องศา คาบปฐมฐานของแทนเจนต์ หรือโคแทนเจนต์ จะเท่ากับครึ่งวงกลม นั่นคือเท่ากับ π เรเดียน หรือ 180 องศา
        จากข้างบนนี้ ค่าไซน์และโคไซน์ถูกนิยามจากวงกลมหนึ่งหน่วยโดยตรง แต่สี่ฟังก์ชันตรีโกณมิติที่เหลือจะถูกนิยามโดย
	an	heta = frac{sin	heta}{cos	heta}sec	heta = frac{1}{cos	heta}csc	heta = frac{1}{sin	heta}cot	heta = frac{cos	heta}{sin	heta}

         ฟังก์ชันตรีโกณมิติพื้นฐานทั้งหมด สามารถนิยามจากวงกลมหนึ่งหน่วยได้โดยใช้วงกลมหนึ่งหน่วย ที่จุดศูนย์กลางอยู่ที่จุด O ซึ่งคล้ายกับการนิยามเชิงเรขาคณิตที่ใช้กันมาในสมัยก่อน ให้ AB เป็นคอร์ดของวงกลม ซึ่ง θ เป็นครึ่งหนึ่งของมุมที่รองรับคอร์ดนั้น จะได้
  • sin(θ) คือ ความยาว AC (ครึ่งหนึ่งของคอร์ด) นิยามนี้เริ่มใช้โดยชาวอินเดีย
  • cos(θ) คือระยะทางตามแนวนอน OC
  • versin(θ) = 1 − cos(θ) คือ ความยาว CD
  • tan(θ) คือ ความยาวของส่วน AE ของเส้นสัมผัสที่ลากผ่านจุด A จึงเป็นที่มาของคำว่าแทนเจนต์นั่นเอง (tangent = สัมผัส)
  • cot(θ) คือ ส่วนของเส้นสัมผัสที่เหลือ คือความยาว AF
  • sec(θ) = OE และ
  • csc(θ) = OF เป็นส่วนของเส้นซีแคนต์ (ตัดวงกลมที่จุดสองจุด) ซึ่งสามารถมองว่าเป็นภาพฉายของ OA ตามแนวเส้นสัมผัสที่จุด A ไปยังแกนนอนและแกนตั้ง ตามลำดับ
  • exsec(θ) = DE = sec(θ) − 1 (ส่วนของซีแคนต์ด้านนอก)
       ด้วยวิธีสร้างเหล่านี้ ทำให้เห็นภาพฟังก์ชันซีแคนต์และแทนเจนต์ลู่ออก เมื่อ θ เข้าใกล้ π/2 (90 องศา) และโคซีแคนต์และโคแทนเจนต์ลู่ออก เมื่อ θ เข้าใกล้ศูนย์ 
นิยามด้วยอนุกรม
      โดยการใช้เรขาคณิตและคุณสมบัติของลิมิต เราแสดงได้ว่าอนุพันธ์ของไซน์คือโคไซน์ และอนุพันธ์ของไคโซน์คือค่าลบชองไซน์ เราสามารถใช้อนุกรมเทย์เลอร์สำหรับแสดงเอกลักษณ์ต่อไปนี้สำหรับทุกจำนวนจริง x:
sin x = x - frac{x^3}{3!} + frac{x^5}{5!} - frac{x^7}{7!} + cdots = sum_{n=0}^infty frac{(-1)^nx^{2n+1}}{(2n+1)!}cos x = 1 - frac{x^2}{2!} + frac{x^4}{4!} - frac{x^6}{6!} + cdots = sum_{n=0}^infty frac{(-1)^nx^{2n}}{(2n)!}
       เอกลักษณ์เหล่านี้มักใช้เป็น นิยาม ของฟังก์ชันไซน์ และโคไซน์ ซึ่งนำไปใช้เป็นจุดเริ่มต้นแบบเข้มของฟังก์ชันตรีโกณมิติ และการประยุกต์ของมัน (เช่น อนุกรมฟูรีเย) เพราะว่ามันมีพื้นฐานอยู่บนระบบจำนวนจริง ไม่ขึ้นกับการตีความทางเรขาคณิตใดๆ การหาอนุพันธ์ได้และความต่อเนื่องของฟังก์ชันก็มาจากนิยามนี้
เอกลักษณ์
sin left(x+y
ight)=sin x cos y + cos x sin ysin left(x-y
ight)=sin x cos y - cos x sin ycos left(x+y
ight)=cos x cos y - sin x sin ycos left(x-y
ight)=cos x cos y + sin x sin ysin x+sin y=2sin left( frac{x+y}{2} 
ight) cos left( frac{x-y}{2} 
ight) sin x-sin y=2cos left( frac{x+y}{2} 
ight) sin left( frac{x-y}{2} 
ight) cos x+cos y=2cos left( frac{x+y}{2} 
ight) cos left( frac{x-y}{2} 
ight)cos x-cos y=-2sin left( frac{x+y}{2} 
ight)sin left( frac{x-y}{2} 
ight)	an x+	an y=frac{sin left( x+y
ight) }{cos xcos y}	an x-	an y=frac{sin left( x-y
ight) }{cos xcos y}cot x+cot y=frac{sin left( x+y
ight) }{sin xsin y}cot x-cot y=frac{-sin left( x-y
ight) }{sin xsin y}
แหล่งที่มา : https://th.wikipedia.org/wiki/ฟังก์ชันตรีโกณมิติ

ฟังก์ชันตรีโกณมิติ, ฟังก์ชันตรีโกณมิติ หมายถึง, ฟังก์ชันตรีโกณมิติ คือ, ฟังก์ชันตรีโกณมิติ ความหมาย, ฟังก์ชันตรีโกณมิติ คืออะไร

ร่วมเป็นแฟนเพจเรา บน Facebook..ได้ที่นี่เลย!!

คำยอดฮิต

Sanook.commenu